Selasa, 28 Mei 2019

Uncertain Rule-based Fuzzy Logic Systems

Uncertain Rule-based Fuzzy Logic Systems
By:Jerry M. Mendel
Published on 2001-01-01 by Prentice Hall


Preface Uncertainty is the fabric that makes life interesting. For millenia human beings have developed strategies to cope with a plethora of uncertainties, never absolutely sure what the consequences would be, but hopeful that the deleterious effects of those uncertainties could be minimized. This book presents a complete methodology for accomplishing this within the framework of fuzzy logic (FL). This is not the original FL, but is an expanded and richer FL, one that contains the original FL within it. The original FL, founded by Lotfi Zadeh, has been around for more than 35 years, as of the year 2000, and yet it is unable to handle uncertainties. Byhandle, I meanto model and minimize the effect of. That the original FL—type-1 FL—cannot do this sounds paradoxical because the word fuzzy has the connotation of uncertainty. The expanded FL—type-2 FL—is able to handle uncertainties because it can model them and minimize their effects. And, if all uncertainties disappear, type-2 FL reduces to type-1 FL, in much the same way that if randomness disappears, probability reduces to determinism. Although many applications were found for type-1 FL, it is its application torule-based systemsthat has most significantly demonstrated its importance as a powerful design methodology. Such rule-based fuzzy logic systems (FLSs), both type-1 and type-2, are what this book is about. In it I show how to use FL in new ways and how to effectively solve problems that are awash in uncertainties. FL has already been applied in numerous fields, in many of which uncertainties are present (e.g., signal processing, digital communications, computer and communication networks, diagnostic medicine, operations research, financial investing, control, etc.). Hence, the results in this book can immediately be used in all of these fields. To demonstrate the performance advantages for type-2 FLSs over their type-1 counterparts, when uncertainties are present, I describe and provide results for the following applications in this book: forecasting of time series, knowledge-mining using surveys, classification of video data working directly with compressed data, equalization of time-varying nonlinear digital communication channels, overcoming co-channel interference and intersymbol interference for time-varying nonlinear digital communication channels, and connection admission control for asynchronous transfer mode networks. No control applications have been included, because to date type-2 FL has not yet been applied to them; hence, this book is not about FL control, although its methodologies may someday be applicable to it. I have organized this book into four parts. Part 1—Preliminaries— contains four chapters that provide background materials about uncertainty, membership functions, and two case studies (forecasting of time-series and knowledge mining using surveys) that are carried throughout the book. Part 2—Type-1 Fuzzy Logic Systems—contains two chapters that are included to provide the underlying basis for the new type-2 FLSs, so that we can compare type-2 results for our case studies with type-1 results. Part 3—Type-2 Fuzzy Sets—contains three chapters, each of which focuses on a different aspect of such sets. Part 4—Type-2 Fuzzy Logic Systems—which is the heart of the book, contains five chapters, four having to do with different architectures for a FLS and how to handle different kinds of uncertainties within them, and one having to do primarily with four specific applications of type-2 FLSs. This book can be read by anyone who has an undergraduate BS degree and should be of great interest to computer scientists and engineers who already use or want to use rule-based systems and are concerned with how to handle uncertainties about such systems. I have included many worked-out examples in the text, and have also included homework problems at the end of most chapters so that the book can be used in a classroom setting as well as a technical reference. Here are some specific ways that this book can be used: For the person totally unfamiliar with FL who wants a quick introduction to it, read the Supplement to Chapter 1 and Chapter 5 (Sections 5.1-5.8). For the person who wants an in-depth treatment of type-1 rule-based FLSs, read the Supplement to Chapter 1 and Chapters 4-6. For the person who is only interested in type-2 fuzzy set theory, read Chapters 3, 7-9, and Appendices A and B. For a person who wants to give a course on rule-based fuzzy logic systems, use Chapters 1-12 and 13 (if time permits). Chapter 14 should be of interest to people with a background in digital communications, pattern recognition, or communication networks and will suggest projects for a course. For a person who is a proponent of Takagi-Sugeno-Kang (TSK) fuzzy systems and wants to see what their type-2 counterparts look like, read Chapters 3, 7-9, and 13. For a person who is interested in forecasting of time-series and wants to get a quick overview of the benefits to modeling uncertainties on forecasting performance when using rule-based forecasters, read Chapters 4 (Section 4.2), 5 (Section 5.10), 6 (Section 6.7), 10 (Section 10.11), 11 (Section 11.5), and 12 (Section 12.5). For a person who is interested in knowledge mining and wants to get a quick overview of the benefits to modeling uncertainties on judgment making when using rule-based advisors, read Chapters 4 (Section 4.3), 5 (Section 5.11), and 10 (Section 10.12). So that people will start using type-2 FL as soon as possible, I have made free software available online for implementing and designing type-1 and type-2 FLSs. It is MATLAB-based (MATLAB is a registered trademark of The MathWorks, Inc.), was developed by my former PhD students Nilesh Karnik and Qilian Liang, and can be reached at:http://sipi.usc.edu/. A computation section, which directs the reader to very specific M-files, appears at the end of most chapters of this book. Appendix C summarizes all of the M-files so that the reader can see the forest from the trees.

This Book was ranked at 41 by Google Books for keyword fuzzy thinking the new science of fuzzy logic.

Book ID of Uncertain Rule-based Fuzzy Logic Systems's Books is j3NQAAAAMAAJ, Book which was written byJerry M. Mendelhave ETAG "q1PDVCKtEOk"

Book which was published by Prentice Hall since 2001-01-01 have ISBNs, ISBN 13 Code is 9780130409690 and ISBN 10 Code is 0130409693

Reading Mode in Text Status is false and Reading Mode in Image Status is false

Book which have "555 Pages" is Printed at BOOK under CategoryComputers

This Book was rated by 1 Raters and have average rate at "5.0"

This eBook Maturity (Adult Book) status is NOT_MATURE

Book was written in en

eBook Version Availability Status at PDF is falseand in ePub is false

Book Preview

Uncertain Rule-based Fuzzy Logic Systems

Tidak ada komentar:

Posting Komentar

Comments

Contact Us

Nama

Email *

Pesan *